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a b s t r a c t

In this paper, the modelling of an energy generation system based on polymer electrolyte membrane fuel
cell (PEMFC) system through a parameter varying approach (LPV model), that takes in to account model
parameter variation with the operating point, is presented. This model has been obtained through a
Jacobian linearization of the PEMFC non-linear dynamic model that was previously calibrated using real
vailable online 25 November 2010

eywords:
EM fuel cell
odelling

PV

data from lab. In order to illustrate the use of the LPV model obtained its application to model-based fault
detection is used. For this purposes a set of common fault scenarios, which could appear during a normal
PEMFC operation, is used as case study.

© 2010 Elsevier B.V. All rights reserved.
bserver
ault detection

. Introduction

Low-temperature PEM fuel cells are considered as sources for
apid medium of energy generation, making these equipment suit-
ble for automobile applications. The supply of raw materials
usually air or pure oxygen) is normally performed using an air
ompressor or blower and hydrogen stored in tanks. The system
ses additional equipment to carry materials reaction to the opti-
um operating conditions, such as cooling systemsand humidifier.
uring the chemical reaction that is taking place into the stack,
here the energy is generated, different phenomena occur, such as

hermal, fluid-mechanical and electrolytic.
The complex and non linear dynamics of the power generation

ystems based on fuel cell technology lead to the use of linear mod-
ls that includes parameter varying with operating point not only
or advanced control techniques but also for fault diagnosis algo-

ithms based on models. The use of LPV models is an alternative
o the approaches presented in previous works [1,2] addressing

ethodologies for monitoring and fault diagnosis based on a the-
retical non-linear dynamic model proposed by Pukrushpan [3,4].
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f Spanish Ministry of Education and by a grant from Consejo Nacional de Ciencia y
ecnologia (CONA-CyT), México. The authors wish also to thank to the Instituto de
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o J. Riera, M. Serra and D. Feroldi.
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2 http://www.iri.upc.edu.

378-7753/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2010.11.084
Within the recent decade, state of art and background about
control of LPV systems has been developed [5–10]. Because of a
LPV system can be considered as a parametrized family of linear
systems that change with the operating point conditions, then LPV
technique allows a systematic approach for control and fault diag-
nosis system design. At the cost of conservatism the approach can
be applied to an even wider range of systems known as quasi-
LPV systems, where varying parameters are scheduled with state
variables.

Since LPV models are structured as similar as a linear time-
invariant (LTI) state space system, the control and fault diagnosis
design methods can easily be extended. The main contribution of
this paper is to obtain a linear parameter varying model for a typical
PEMFC and illustrate its use for robust fault detection using interval
observers.

2. Fuel cell modelling

The model proposed in [11], is a non-linear dynamic model cali-
brated using real data from laboratory using a lsq-non linear fitting
approach [12,13]. This model is able to reproduce the behaviour
of a commercial PEMFC (Ballard 1.2 kW, Nexa©) prototype, which
has been identified in a wide range of operating conditions. Fig. 1
shows the dynamic model layout.
2.1. Dynamic non-linear model

The model is considered as SIMO system, where the input (u)
is the stack current (Ist) and the outputs (y) are battery tempera-
ture (Tst), stack voltage (vst), oxygen consumption ratio (�O2 ), speed

dx.doi.org/10.1016/j.jpowsour.2010.11.084
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:salvador.de.lira@upc.edu
http://websac.upc.es/
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Fig. 1. Nexa© PEM

ngine (ωcp) and inlet pressure to the cathode (Psm). The voltage
rom the compressor (vcm) is controlled using a static feed-forward
ontroller. Fig. 2 shows the layout of each subsystem embedded
nto the PEMFC dynamic model.

The proposed model consists often state, and the state equations
re listed in the following

ω̇cp = 1
Jcpωcp

(�cm − �cp),

Ṗrm = RairTrm

Vrm
(Wca,o − Wrm,o),

ṁrm = Wca − Wrm,o,

Ṗsm = �Ra

Vsm
(WcpTcp − Wsm,oTsm),

ṁsm = Wcp − Wsm,o,
ṁH2 = WH2,i − WH2,o − WH2,r−WH2,nl

,

ṁw,an = Wvan,i − Wvan,o − Wvmbr
,

ṁN2 = WN2,i − WN2,o,
ṁO2 = WO2,i − WO2,o − WO2,r ,

mstCst Ṫst = Hreac − Pelec − Qrad − Q̇conv.

(1)

he state variables (x) of this dynamic model are the following:
ass of oxygen (mO2 ), nitrogen (mN2 ), hydrogen (mH2 ), cathode
ater flow (mw,ca), stack temperature (Tst), angular velocity of the

ompressor (ωcp), supply pressure (Psm) and return pressure (Prm)
f the humidifier, inlet flow (msm) and outlet flow (mrm) of humid-
fier. The subindex in the variables i, o, r, nl means, input, output,
eaction and natural, respectively. In the heat balance the subindex
eac, elec, rad and conv are related respectively to reaction, electric,
adiation and convection.

The system perturbation (z) that have been considered are
elated to the weather conditions (Tamb, Patm).

The model output equations are:

Stack voltage:
vst = nfc · (E − vact − voh − vcon). (2)

Oxygen excess ratio:

�O2 = WO2,i

WO2,r
= xO2 · Wcp

(MO2 · nfc · Ist)/4 · F
. (3)
ulator schematic.

• Compressor speed motor:

ωcp = Ucp · 60
dc · �

, (4)

where vst , total stack voltage (V); E, open circuit voltage (V);
vact , activation voltage loss (V); voh, ohmic voltage lose (V); vcon,
concentration voltage loss (V); nfc, amount of cells; �O2 , oxygen
excess ratio; Ist, stack current (A); F, Faraday constant (col/mol);
W, mass flow (g/s); Ucp, compressor blade (KRPM); dc, compres-
sor diameter blade (%); �, compressor efficiency (%); MO2 , oxygen
molar weight (g/mol); MH2 , hydrogen molar weight (g/mol); xO2 ,
oxygen fraction (%); ϕi, humidity (i = ca, an) (%).

3. Linear parameter varying model

Exist different ways to obtain LPV models. Some methods use
non-linear equations of the system to derive a LPV model such as
state transformation, substitution of functions and methods using
the well known Jacobian linearization [14–16]. Another kind of
method uses multi-model identification that consists basically in
two different steps: (1) a set of LTI model is identified at differ-
ent equilibrium points by classical methods (on-line or off-line), (2)
then, the following step is to get a multi-model by an interpola-
tion law that allows to commute among local LTI model at each
operating point [17,18].

3.1. Problem formulation

The type of LPV system, which is considered in this
paper, assumes an affine dependence with a parame-
ter vector ϑ̃k and can be described in discrete time state
space as:

xk+1 = A(ϑ̃k)xk + B(ϑ̃k)uk + wk,

y = C(ϑ̃ )x + D(ϑ̃ )u + v ,
(5)
k k k k k k

where xk ∈Rnx , uk ∈Rnu and yk ∈Rny are, respectively, the state,
input, and output vectors. The process and measurement noises are
wk ∈Rnx and vk ∈Rny respectively. Both are considered unknown
but bounded as vk ∈Vnx and wk ∈W which are interval boxes.
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˜
k ∈ 
 is the vector of time-varying parameters that change
ith the operating point scheduled by some measured system

ariablespk (pk := p(k)) that can be estimated using some known
unction:

˜
k = f (pk), (6)

here

= {ϑ̃k ∈Rnϑ |ϑ̃- k ≤ ϑ̃k ≤ ¯̃ϑk}. (7)

he system described in Eq. (5) could be seen as a lin-
ar model parameterized by a monitored variable through Eq.
7) [5,19,20,21]. In practice, the model in Eq. (6) by a poly-
ope of dimension is N described as an array of matrices
escribed by[
A(ϑ̃k) B(ϑ̃k)
C(ϑ̃k) D(ϑ̃k)

]
∈

{[
Aj(ϑj) Bj(ϑj)
Cj(ϑj) Dj(ϑj)

]}

∼=
N∑

j=1

˛j(pk) ·
[

Aj(ϑj) Bj(ϑj)
Cj(ϑj) Dj(ϑj)

]
,

(8)

here Aj, Bj, Cjand Dj are the state matrices for each jth model
btained by linearization of the non-linear model around the jth
perating point. Using Eq. (8), the Eq. (5) can be approximated as
ollows:

xk+1 =
N∑

j=1

˛j(pk) · [Aj(ϑ
j) Bj(ϑ

j)] ·
[

xk

uk

]
,

yk =
N∑

j=1

˛j(pk) · [Cj(ϑj) Dj(ϑj)] ·
[

xk

uk

]
.

(9)
.2. PEMFC LPV structure

Using the PEMFC non-linear dynamic model presented in
ection 2.1 and using the Jacobian linearization approach, the non-
inear model is possible to transform it into a LPV model in state
namic model diagram.

space form, as in Eq. (9) with the following system matrices struc-
ture

Aj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 0 a14 0 0 0 0 0 0
0 a22 a23 a24 a25 0 0 a28 a29 a210
0 a32 0 a34 a35 0 0 a38 a39 a310

a41 0 0 a44 a45 0 0 a48 a49 a410
a51 0 0 a54 0 0 0 a58 a59 a510
0 0 0 a64 0 a66 a67 0 0 a610
0 0 0 a74 0 a76 a77 0 0 a710
0 a82 0 a84 a85 0 0 a88 a89 a810
0 a92 0 a94 a95 0 0 a98 a99 a910
0 0 0 0 0 a106 a107 0 a109 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Cj =

⎡
⎢⎣

c11 0 0 0 0 0 0 0 0 0
0 0 0 c24 0 0 0 0 0 0
0 0 0 c34 c35 0 0 c38 c39 c310
0 0 0 0 0 c46 c47 c48 c49 c410

⎤
⎥⎦ ,

Bj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 b12
0 0
0 0
0 0
0 0

b71 0
b81 0
0 0

b91 0
b101 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Dj =

⎡
⎢⎣

0 0
0 0

d31 0
d41 0

⎤
⎥⎦ (10)

where

• States: x = [ωcp Pom mom Psm msm mH2 mw,an mN2 mO2 Tst]T.
• Inputs: u = [Ist vcm]T where the scheduling variable is Ist.

• Outputs: y = [Psm vst �O2 ωcp].
• Perturbations: z = [Tamb Patm].

In this case the scheduling variable is the current (Ist). Thus Eq.
(6) is ϑ̃k = f (Ist,k) and the varying parameters (aij, bij, cij and dij)
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Table 1
Eigenvalues, rank and condition number for the observability analysis of the poly-
topic LPV system at Ist = 15 A.

State �i Rank Cond

ωcp −1.00E+04 10 1.11E−03
Prm −543.8 10 27.92
mrm −388 10 31.87
Psm −49.9 10 404.82
msm −13.14 10 2.22E+03
mH2 −4.88 10 1.04E+04
man −1.72 10 5.23E+04
mN2 −1.26 10 7.53E+04
mO2 −0.003 10 1.90E+07
Tst −2.50E−07 10 3.31E+11

Table 2
Eigenvalues, rank and condition number for the observability analysis of the reduced
polytopic LPV system at Ist = 15 A.

State �i Rank Cond

x1 −26.81 4 30.4

Fig. 3 shows the simulation results of the complete and reduced
PEMFC LPV model under a sequents of operating point changes in
current demand (Ist). This figure shows also the measured outputs
for comparison with those generated in simulation. Fig. 4 shows

Table 3
Description of the fault scenarios implemented in FGB.

ID Fault description Type Magnitude

f1 There is a suddenly increase of
friction in the mechanical
component part of the compressor

Parametric abrupt �kR = 60%

f2 Degradation in the stack cells stack
is presented because of
contact-sensitivity reactions
against to a reaction killer

Parametric abrupt 40%

f3 Hydrogen leak in the anode is
presented because of seal
degradation.

Parametric abrupt Anl,f = 2E+2

f A suddenly leak of hydrogen is Parametric abrupt 80%
S. de Lira et al. / Journal of Pow

f the system matrices. Consequently the system in Eq. (9) can be
articularized as follows.

xk+1 =
N∑

j=1

˛j(Ist,k) · [Aj(ϑ
j) Bj(ϑ

j)] ·
[

xk

uk

]
,

yk =
N∑

j=1

˛j(Ist,k) · [Cj(ϑj) Dj(ϑj)] ·
[

xk

uk

]
.

(11)

. Linear parameter varying observer

.1. Definition

Using the PEMFC LPV model obtained in previous section, a
iscrete time LPV observer for state estimation with Luenberger
bserver structure can be expressed as

x̂k+1 = A(ϑ̃k)x̂k + B(ϑ̃k)uk + L(ϑ̃k)(yk − ŷk) + wk,

ŷk = C(ϑ̃k)x̂k + D(ϑ̃k)uk + vk.
(12)

sing Eq. (11) the observer can be alternatively expressed as

x̂k+1 =
N∑

j=1

˛j(Ist,k)[Ao
j (ϑj) Bj(ϑ

j)] ·
[

x̂k

uk

]
,

ŷk =
N∑

j=1

˛j(Ist,k)[Cj(ϑj) Dj(ϑj)] ·
[

x̂k

uk

]
,

(13)

here

o
j = Aj(ϑ

j) − Lj(ϑ
j) · Cj(ϑ

j).

he observer gain (L) should be designed to guarantee closed loop
tability for all operating points, i.e. ϑ̃k ∈ 
. This is achieved through
MI formulation for pole-placement within a wide class of pole
lustering regions, defined by an affix (−q, 0) and a radius r such
hat (−q + r) < 0 [22].

.2. Observability analysis

The observer design implies the fulfilment of the observability
ondition that is related to the number of states that can be inferred
or estimated) based on the available measured outputs. For the
tudy of the system observability degree at each operating point
ϑ) the following conditions are used

ank

([
�iI − A

C

])
; cond

([
�iI − A

C

])
. (14)

s discussed in [4], a given system eigenvalue �i is unobservable
f the rank condition indicates a rank loss. On the other hand, a
arge condition number implies that the corresponding eigenvalue
s weakly observable.

. Application to fault detection

In order to test the proposed modelling methodology for fault
etection, a common set of faults have been selected as benchmark.
his set of fault was included in the model (Ballard, Nexa©) [11] in
imulation environment in the MATLAB/SIMULINK© (see Fig. 1).

.1. Model analysis
The stability of the PEMFC system, described in LPV form by
q. (5), at each operating point is verified if all the eigenvalues of
he system are negative. In the case of the a operating point corre-
ponding to Ist = 15 A, the stability of the system can be verified by
x2 −4.91 4 11.5
x3 −2.21 4 88.94
x4 −3.50E−03 4 3.80E+03

the eigenvalues shown in Table 1. On the other hand, although the
system is observable using the observability matrix test, the observ-
ability of the system could be further analyzed with conditions
showed in Eq. (14).

From Table 1, it is clear to see that there are states (ωcp, Psm,
msm, Prm, mrm) which contain fast dynamics compared to others
such as the temperature (Tst) or oxygen mass (mO2 ). Both types
of dynamics could decrease the observability performance of the
system producing problems with the state estimation using the
observer (Table 2). This can be verified by looking at condition
number introduced in Eq. (14). To solve this problem, the order
of the model should be reduced as proposed in [23]. Table 1 shows
that the eigenvalues of the four first states present a higher value
than the rest of them. This means that the model can be reduced to
a four order state space model instead of the original ten order
state space. The reduced system is observable and the condi-
tion number has improved with respect to the values presented
in Table 3.

In order to test the behaviour of the reduced model compared to
the complete model, both models were implemented in simulation.
4

presented at the anode inlet
manifold

f5 A suddenly leak of air is presented
at the inlet outlet supply manifold
inlet manifold

Parametric abrupt 10%
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.2. Fault benchmark

The usefulness of LPV model and observer proposed in this paper
s illustrated in fault detection. For this purpose, a set of common

ossible fault scenarios is considered and implemented using the
imulator presented in Fig. 1 by adding a fault generator block (FGB)
see Fig. 7). Table 3 describes the set of faults which were considered
s case study. In the following section, it is described how the faults
ere included in simulation.

980 990 1000 1010 1020 1030 1040
−5

0

5
x 10

−4 Error en Psm

980 990 1000 1010 1020 1030 1040
−0.04

−0.02

0

0.02

0.04

Time (k)

Error en r
O2

−

−

−

P
sm

(real)−P
sm

(mod red)

P
sm

(real)−P
sm

(mod com)

r
O2

(real)−r
O2

(mod red)

r
O2

(real)−r
O2

(mod com)

Fig. 4. Model residuals (reduced m
980 990 1000 1010 1020 1030 1040
Time (k)

een real and reduced polytope LPV models.

5.2.1. Fault 1
The fault f1 is simulated with an increment, �Rcm, in the com-

pressor motor resistance Rcm. The fault effect is translated in a
change in the compressor torque �cm affecting directly the state
variable ωcp

�cm = �cmkt

Rcm + �Rcm
(vcm − kvωcm), (15)

where �cm is the motor mechanical efficiency, kt and kv are motor
constants, and ωcm is the compressor speed. Furthermore, the
parameter is related with the state of Psm because its dynamics are

governed by the compressor inlet air flow

Wca,i = (ksm + �ksm)(Psm − Pcp), (16)

where Pcp is the compressor pressure and Psm is the supply manifold
pressure. The amount of flow that is feed into the cathode is related
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o pressure with a linear constant ksm. It is possible to simulate a
eduction in the supply manifold as a change in ksm as �ksm. Thus,
he air mass flow is affected by the fault and consequently, the total

ass balance across the PEMFC changes.

.2.2. Fault 2
Fault f2 is presented as any contamination in the reaction into

he stack reducing the chemical reaction efficiency by decreasing
f catalysis active area. The current density, i, is defined as current
er area in a single cell, which is equals to stack current Ist (A), per
ell active area, Afc (cm2). If the stack is mead of a set of cells in
eries architecture.

= Ist

Afc · �Afc
, (17)

here �Afc is the active contaminated area.
Because of the major voltage drops are associated with cur-

ent density for non-linear relations, see [24], current density is
n important issue for total stack voltage

st = nfc × [E − vact − vohm − vconc], (18)

here E is the open circuit voltage; vact , vohm and vconc are activation
oss, ohmic loss and concentration loss, respectively, then is clear
hat fault f2 will have a direct action over the output of stack voltage.

.2.3. Fault 3
The term WH2,nl introduced in Eq. (10) represents the natu-
al leak from the anode of the fuel cell stack. This leak is always
resent due to the physical stack sealing design. It is assumed that
he natural leak is governed by a standard orifice relation through
n effective area, Anl. This parameter has been obtained in [25]. In
rder to simulate a degradation in the seal a change in Anl is used
er Boundary Process output

st real measurements in faultily operation (f2, f4).

as Anl,f = Anlf3.

WH2,nl = Anl,f Pan√
Ran�an

P1/�
r

(
2�

� − 1
[1 − P(�−1)/�

r ]
)1/2

, (19)

where Pr = Pan/Patm is the pressure ratio across the assumed leak
and the anode gas constant, Ran, is calculated through the universal
gas constant, R as follows

Ran = R

yH2 MH2 + (1 − yH2 )MH2O
, (20)

where the molar fraction of hydrogen in the anode is given by

yH2 = Pan − �anPsatT=st

Pan
. (21)

5.2.4. Fault 4
This fault introduces a leak of hydrogen and is simulated as a

change in the mass balance in the hydrogen inlet flow as follows

WH2,f = WH2,i − WH2,if4 . (22)

5.2.5. Fault 5
This fault appears as a leak of air at the cathode inlet flow.

Because this fault is considered as a leak, it is introduced in the
mass balance, as fault f4, as follows

Whm,f = Whm,i − Whm,if5 . (23)
Note that the amount of air that does not enter into the system will
not only create an abrupt change in the total mass balance, where
mO2 , mN2 state variable are mainly involved, but also a system pres-
sure change.
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Fig. 6. Confidence intervals for predicted outputs

.3. Fault detection systems

The fault diagnosis system (FDS) based on the LPV observer
roposed in this paper has been implemented using MAT-
AB/SIMULINK environment [26]. The simulator of fuel cell model
Ballard Nexa©) presented in Section 2.1 is used as virtual reality for
he fault detection case study. The FGB and FDS subsystems blocks
ere added to the PEM FC simulator to create the fault scenarios
resented in the previous section.

.3.1. Fault detection process (FDP)
Using the measured inputs and outputs presented in Section 2.1

nd using the structural analysis methodology [27], the following
et of residuals can be obtained as:

r1 = Psm − P̂sm,
r2 = ωcp − ω̂cp,

r = � − �̂ ,
(24)
3 O2 O2
r4 = vst − v̂st .

he residuals are defined conceptually as the differences the pro-
ess measurements and output estimation from the LPV observer
s described in Section 3.2. From the model analysis in Section 5.1,

Fig. 7. Fault generator block (FGB) and fault diagn
Time (Ts)

st real measurements in faultily operation (f2, f4).

the reduced model offers a better performance when implement-
ing the LPV observer than the complete model. Thus the reduced
model is used for creating the PEMFC LPV model.

Fig. 5 shows the measured and the confidence intervals for pre-
dicted outputs considering noise and process noise. Notice that
when the f2 is introduced at k = 50 in the PEMFC system, at the
time k = 85 the sensor measurements cross the boundaries of con-
fidence intervals of predicted outputs. This allows detecting the
fault.

Fig. 6 shows PEMFC process behaviour compared with the adap-
tive thresholding generated the interval observer. The process
suffers a degradation in supply pressure (Psm) sensor fault over the
time starting from k = 20 and ends in k = 60, the measurement cross
the upper boundary at k = 40. Note that the other variables do not
cross their thresholds. Later appears a sensor offset in �O2 , that leads
the measurement to cross the upper bound at k = 60. The effect of
this second fault additionally acts over the interval estimation of

ωcp (Fig. 7).

The confidence intervals for predicted outputs are computed
using zonotope-based algorithm proposed in [28], which offers an
efficient way of taking into account model uncertainty when esti-
mating the state using an LPV observer.

osis system (FDS) implementation diagram.
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. Conclusions

In this paper, an LPV model is introduced as a means to approx-
mate a PEMFC that presents a highly non-linear behaviour using
model with linear structure but with parameters that vary with

he operating point. This model can be obtained from the lineariza-
ion of non-linear model which has been calibrated above a set of
ata from a commercial PEMFC model (Ballard, Nexa©) around a
et of operating points. In addition to the LPV model, the paper
roposes the design of an LPV observer to estimate PEMFC system
tates. To illustrate the usefulness of the LPV model and observer,
he application to fault detection is used. The paper also analysis
he observability of the LPV model obtained concluding that the
omplete LPV model contains dynamics that are very different that
reate numerical difficulties in the observation implementation.
hese difficulties can be overcome by model reduction neglecting
ystem fast dynamics. The application of the LPV observer to fault
etection is shown using a simulator developed using an exper-

mentally calibrated nonlinear model of a typical PEMFC (Nexa©

ower Module). A set of common fault scenarios have been defined
nd implemented in the simulator to test the LPV observer in fault
etection. Finally, the paper presents how the observer can satis-
actorily detect faults in some of the fault scenarios defined. As an
xtension of the research presented in this paper, an algorithm that
llows not only detect faults but also isolate them is being devel-
ped based also in the LPV observer developed. Some preliminary
esults have already been obtained that show promising results in
his line.
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